Spark #๐œ๐š๐ญ๐š๐ฅ๐ฒ๐ฌ๐ญ_๐Ž๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐ž๐ซ

ยท

2 min read

Let's #spark

๐Ÿ“Œ ๐–๐ก๐š๐ญ ๐ข๐ฌ ๐š #๐œ๐š๐ญ๐š๐ฅ๐ฒ๐ฌ๐ญ_๐Ž๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐ž๐ซ ๐š๐ง๐ ๐ฐ๐ก๐š๐ญ ๐š๐ซ๐ž ๐ญ๐ก๐ž ๐ฏ๐š๐ซ๐ข๐จ๐ฎ๐ฌ ๐ช๐ฎ๐ž๐ซ๐ฒ ๐จ๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐ข๐ญ ๐ฉ๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ๐ฌ?

โœ” The Catalyst optimizer is a crucial component of Apache Spark's execution engine responsible for #optimizing and #transforming the logical execution plan of Spark SQL queries.
โœ” It is a ๐ซ๐ฎ๐ฅ๐ž-๐›๐š๐ฌ๐ž๐ ๐จ๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐ž๐ซ that leverages techniques from functional programming and query optimization research to improve the performance of Spark SQL queries.
When you submit a Spark SQL query, it goes through several phases in Spark's execution process:
โœ… ๐๐š๐ซ๐ฌ๐ข๐ง๐ : The query is parsed and converted into an abstract syntax tree (AST).
โœ… ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ: The AST undergoes semantic analysis to ensure that the query is well-formed and to resolve references to tables and columns.
โœ… ๐‹๐จ๐ ๐ข๐œ๐š๐ฅ ๐๐ฅ๐š๐ง ๐†๐ž๐ง๐ž๐ซ๐š๐ญ๐ข๐จ๐ง: The analyzed AST is transformed into a logical plan, which represents the high-level logical operations required to execute the query.
โœ… ๐Ž๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง (๐‚๐š๐ญ๐š๐ฅ๐ฒ๐ฌ๐ญ ๐Ž๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐ž๐ซ): The logical plan goes through the Catalyst optimizer, which applies various optimization rules to improve the plan's efficiency. This optimization phase is entirely rule-based and works on the logical plan representation.
โœ… ๐๐ก๐ฒ๐ฌ๐ข๐œ๐š๐ฅ ๐๐ฅ๐š๐ง ๐†๐ž๐ง๐ž๐ซ๐š๐ญ๐ข๐จ๐ง: After optimization, the Catalyst optimizer produces a set of potential physical plans based on the available data sources and storage formats.
โœ… ๐‚๐จ๐ฌ๐ญ-๐๐š๐ฌ๐ž๐ ๐Ž๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง (๐Ž๐ฉ๐ญ๐ข๐จ๐ง๐š๐ฅ): Spark's cost-based optimizer, based on the Tungsten execution engine, can further analyze the physical plans and select the most efficient plan based on cost estimates.

โœ” ๐‘ป๐’‰๐’† ๐‘ช๐’‚๐’•๐’‚๐’๐’š๐’”๐’• ๐’๐’‘๐’•๐’Š๐’Ž๐’Š๐’›๐’†๐’“ ๐’Š๐’” ๐’…๐’†๐’”๐’Š๐’ˆ๐’๐’†๐’… ๐’•๐’ ๐’‘๐’†๐’“๐’‡๐’๐’“๐’Ž ๐’—๐’‚๐’“๐’Š๐’๐’–๐’” ๐’’๐’–๐’†๐’“๐’š ๐’๐’‘๐’•๐’Š๐’Ž๐’Š๐’›๐’‚๐’•๐’Š๐’๐’๐’”, ๐’”๐’–๐’„๐’‰ ๐’‚๐’”:

โœ… ๐‚๐จ๐ง๐ฌ๐ญ๐š๐ง๐ญ ๐…๐จ๐ฅ๐๐ข๐ง๐ : Evaluating constant expressions at compile-time.
Predicate Pushdown: Pushing filter predicates as close to the data source as possible to minimize data movement.
โœ… ๐‚๐จ๐ฅ๐ฎ๐ฆ๐ง ๐๐ซ๐ฎ๐ง๐ข๐ง๐ : Removing unused columns from the query plan to reduce data transfer and improve performance.
โœ… ๐‰๐จ๐ข๐ง ๐‘๐ž๐จ๐ซ๐๐ž๐ซ๐ข๐ง๐ : Reordering joins to minimize intermediate data size.
Expression Simplification: Simplifying complex expressions and reusing common subexpressions.
โœ…๐’๐ญ๐š๐ญ๐ข๐ฌ๐ญ๐ข๐œ๐ฌ-๐๐š๐ฌ๐ž๐ ๐Ž๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง: Using statistics about data distribution and cardinality to make better optimization decisions.

โ˜‘ The Catalyst optimizer makes Spark SQL #highly_efficient by transforming and optimizing logical plans before generating the physical execution plan.

ย